博客
关于我
BZOJ 3812 主旋律
阅读量:283 次
发布时间:2019-03-01

本文共 1822 字,大约阅读时间需要 6 分钟。

题目链接

题解

考虑求非强连通子图的数量,假设为 g g g,那么答案就是 2 m − g 2^m-g 2mg。现在考虑求 g g g

假设 f s f_s fs表示用 s s s这些点能构成的强连通图的个数, g s g_s gs表示用 s s s这些点能构成的非强连通图的方案数,其中构成 i i i个强连通分量则对 g s g_s gs的贡献为 ( − 1 ) i (-1)^i (1)i。容易发现

g s = f s − ∑ t ⊂ s , u ∈ t g t f s − t g_s=f_s-\sum_{t\subset s,u\in t} g_tf_{s-t} gs=fsts,utgtfst
那么
f s = 2 e s − ∑ t ⊆ s , t ̸ = ∅ 2 e s − t + e s − t , t g s f_s=2^{e_s}-\sum_{t\subseteq s,t\not= \varnothing}2^{e_{s-t}+e_{s-t,t}}g_s fs=2ests,t̸=2est+est,tgs
容易发现, f s f_s fs此时需要的是不包含 f s f_s fs g s g_s gs,因此 g s g_s gs在求出 f s f_s fs之前是不能 + f s +f_s +fs的。

代码

#include 
int read(){ int x=0,f=1; char ch=getchar(); while((ch<'0')||(ch>'9')) { if(ch=='-') { f=-f; } ch=getchar(); } while((ch>='0')&&(ch<='9')) { x=x*10+ch-'0'; ch=getchar(); } return x*f;} const int maxn=15;const int maxm=1<
=mod) { pow[i]-=mod; } } f[0]=g[0]=1; for(int s=1; s<=full; ++s) { int sk=s^lowbit(s); for(int t=sk; t; t=sk&(t-1)) { g[s]-=1ll*f[s^t]*g[t]%mod; if(g[s]<0) { g[s]+=mod; } } for(int i=1; i<=n; ++i) { if((1<<(i-1))&s) { in[s]+=ecnt[s][i]; } } f[s]+=pow[in[s]]; for(int t=s; t; t=s&(t-1)) { int e=0; for(int i=1; i<=n; ++i) { if((1<<(i-1))&t) { e+=ecnt[s^t][i]; } } f[s]-=1ll*pow[e+in[s^t]]*g[t]%mod; if(f[s]<0) { f[s]+=mod; } } g[s]+=f[s]; if(g[s]>=mod) { g[s]-=mod; } } printf("%d\n",f[full]); return 0;}

转载地址:http://scwo.baihongyu.com/

你可能感兴趣的文章
mysql清空带外键的表
查看>>
MySQL清空表数据
查看>>
mysql源码安装
查看>>
Mysql源码安装过程中可能碰到的问题
查看>>
MySQL灵魂16问,你能撑到第几问?
查看>>
MySQL灵魂拷问:36题带你面试通关
查看>>
mysql状态分析之show global status
查看>>
mysql状态查看 QPS/TPS/缓存命中率查看
查看>>
mysql生成树形数据_mysql 实现树形的遍历
查看>>
mysql用于检索的关键字_Mysql全文搜索match...against的用法
查看>>
MySQL用得好好的,为什么要转ES?
查看>>
MySql用户以及权限的管理。
查看>>
MySQL用户权限配置:精细控制和远程访问的艺术!------文章最后有惊喜哦。
查看>>
mysql用户管理、常用语句、数据分备份恢复
查看>>
MySQL留疑问:left join时选on还是where?
查看>>
mysql登陆慢问题解决
查看>>
Mysql百万级数据查询优化
查看>>
MySQL的 DDL和DML和DQL的基本语法
查看>>
mysql的 if else , case when then, IFNULL
查看>>
MySQL的10种常用数据类型
查看>>